凸包
1.概念
凸包(Convex Hull)是一个计算几何(图形学)中的概念。
在一个实数向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包。
X的凸包可以用X内所有点(X1,…Xn)的线性组合来构造.
在二维欧几里得空间中,凸包可想象为一条刚好包著所有点的橡皮圈。
用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集 中所有的点。
例子:假设平面上有p0~p12共13个点,过某些点作一个多边形,使这个多边形能把所有点都“包”起来。当这个 多边形是凸多边形的时候,我们就叫它“凸包”。如下图:

二.解法:
Graham扫描法
时间复杂度:O(n㏒n)
思路:Graham扫描的思想是先找到凸包上的一个点,然后从那个点开始按逆时针方向逐个找凸包上的点, 实际上就是进行极角排序,然后对其查询使用。
步骤:
- 把所有点放在二维坐标系中,则纵坐标最小的点一定是凸包上的点,如图中的P0。
- 把所有点的坐标平移一下,使 P0 作为原点,如上图。
- 计算各个点相对于 P0 的幅角 α ,按从小到大的顺序对各个点排序。当 α 相同时,距离 P0 比较近的排在前面。例如上图得到的结果为 P1,P2,P3,P4,P5,P6,P7,P8。我们由几何知识可以知道,结果中第一个点 P1 和最后一个点 P8 一定是凸包上的点。
(以上是准备步骤,以下开始求凸包)
以上,我们已经知道了凸包上的第一个点 P0 和第二个点 P1,我们把它们放在栈里面。现在从步骤3求得的那个结果里,把 P1 后面的那个点拿出来做当前点,即 P2 。接下来开始找第三个点: - 连接P0和栈顶的那个点,得到直线 L 。看当前点是在直线 L 的右边还是左边。如果在直线的右边就执行步骤5;如果在直线上,或者在直线的左边就执行步骤6。
- 如果在右边,则栈顶的那个元素不是凸包上的点,把栈顶元素出栈。执行步骤4。
- 当前点是凸包上的点,把它压入栈,执行步骤7。
- 检查当前的点 P2 是不是步骤3那个结果的最后一个元素。是最后一个元素的话就结束。如果不是的话就把 P2 后面那个点做当前点,返回步骤4。
最后,栈中的元素就是凸包上的点了。
模板代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<stack>
#include<cstdio>
#include<map>
#include<set>
#include<string>
#include<queue>
using namespace std;
#define inf 0x3f3f3f3f
#define inff 1LL<<60
#define mem(x) memset(x,0,sizeof(x))
#define LL long long
struct node
{
double x,y;
}vex[1005],stackk[1006];
double cross(node a,node b,node c){
return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
double dis(node a,node b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool cmp1(node a,node b){
if(a.y==b.y)
return a.x<b.x;
else
return a.y<b.y;
}
bool cmp2(node a,node b){
double m=cross(vex[0],a,b);
if(m>0){
return 1;
}
else if(m==0){
return 1;
}
else{
return 0;
}
}//极角排序,从0到2pi
int main(int argc, char const *argv[])
{
int n,L,top;
cin>>n;//n个点
for (int i = 0; i < n; ++i)
{
cin>>vex[i].x>>vex[i].y;
}
mem(stackk);
sort(vex,vex+n,cmp1);
double xx=vex[0].x;
double yy=vex[0].y;
sort(vex+1,vex+n,cmp2);
stackk[1]=vex[1];
top=1;
for(int i=2;i<n;i++){
while(cross(stackk[top-1],stackk[top],vex[i])<0){
top--;
}
stackk[++top]=vex[i];
}
double s=0;
for (int i = 1; i <= top; ++i)
{
s+=dis(stackk[i-1],stackk[i]);
}
cout<<s<<endl;
return 0;
}